Ethiopian Radation Protection Authority Ethiopian Radation Protection Authority

የጨረራ ውስድ መጠን ለማስለካት የጨረራ ውስድ መጠን ለማስለካት

የድርጅቱ ስም፡ ዶዚሜድ የላብራቶሪ ፍተሻ

(የጨረራ ውስድ መጠን መለኪያ)

ስልክ ቁጥር፡- 0116900239/011878154

ሞባይል፡- 0961279384/85


የቢሮ አድራሻ፡- 22 ማዞሪያ ጎላጎል ሕንፃ

              11ኛ ፎቅ

              ቢ.ቁ 1103


Organization: Dosi med Laboratory test

Address: 0116900239/011878154

Mobile: 0961279384/85


Office: 22 Mazoriya Golagol 

             Building 11th Floor

            Office No. 1103  

ERPA's Proclamation ERPA's Proclamation

Ethiopian Radiation Protection Authority Proclamation No 1025/2017

Click here to download ERPA's Proclamation NO. 1025/2017


Ethiopian Radiation Protection Authority Page Ethiopian Radiation Protection Authority Page


Conducting Inspection based on: Regular inspection Programme and, Request from the customer,Verification Inspection, Inspection based on past profile of the institution.


Possible actions for non-compliance: Formal instructions assured and correct the infraction, Written warning for non – compliance, Suspension of or restrictions on, operation until regulatory infraction or safety condition is corrected.

Organizational structure of ERPA

The solid organazational structural unit of ERPA. ERPA is a Federal Government body that control and regulate the import,export, use, transport, dispose of, etc any source of radiation.

ERPA Photo Display ERPA Photo Display

IRRS Mission In Ethiopia 2017
Actual Evaluation at Tse Tse Fly
Women's Day celebration
MOU Signing with Haromaya University
MOU Signing with Diredawa University
MOU Signing with SUDAN
MOU Signing with SUDAN
Discussion with the US. Nuclear Regulatory Commission, in Ethiopia Addis Ababa
MOU Signing with USNRC
IAEA 63rd General Conference at Vienna, Austria

Asset Publisher Asset Publisher


The Science of Medical Imaging SPECT and PET

The Science of Medical Imaging SPECT and PET

The Science of Medical Imaging examines the technology behind non-invasive methods of creating images of the human body. In this installment, we look at two types of emission imaging: Positron Emission Tomography (PET) and Single-photon Emission Computerized Tomography (SPECT).

As its name suggests, emission imaging works by detecting radiation emitted from within the patient, enabling clinicians to determine the presence and size of cancerous tumors, and conduct other diagnostic procedures such as coronary perfusion.

Hospitals use two main forms of emission imaging:

Positron Emission Tomography (PET)

Single-photon Emission Computerized Tomography (SPECT)

Both work on the same basic principles - detecting gamma rays and building a three-dimensional picture of, say, a cancerous tumor.

The basics of Emission Imaging

A radioactive tracer (radiotracer) is injected into the patient. Radiotracers are molecules such as glucose with a radioactive isotope attached.

As tumor cells rapidly grow, compared to neighboring cells, they require large amounts of glucose. Blood carries glucose throughout the patient but it is absorbed mostly at the tumor site, carrying the isotope with it.

The isotope then decays, emitting gamma rays (photons that are much higher in energy than visible light and can pass out of the body). By collecting the gamma rays in detectors placed around the patient, we can build up a picture of where they came from, locating the tumor position and shape.

Many different detector systems are available. The simplest is the pinhole camera, which you may have used to observe an eclipse.

To do this, you prick a tiny hole in a sheet of card and place a sheet of paper behind it. A projected image of the eclipse is cast onto the paper. The projection appears back to front and upside down and is viewable without damaging your eyes.

This is shown in Figure A above; but the eclipse has been replaced with The Conversation logo. In the subsequent figures, our theoretical tumor is also replaced by the logo.


And while pinhole cameras are handy for eclipses, the simple design will not suffice for imaging in an oncology department.

In this instance, the sheet of card is replaced with a sheet of dense metal (typically lead, and called a collimator) and the paper is replaced by a detector divided into pixels that can measure the position and energy of each photon that passes through the pinhole as shown in Figure B.

The detector is divided into pixels by the manufacturing process. The smaller the pixels, the more precisely we will know the location of where the gamma ray interacted.

The gamma rays emitted from the decay of the radioisotope leave the tumor in all directions. In Figure B, the two diagonal lines show the limits of the directions that they must follow to pass through the pinhole and interact in the detector.

The tumor has a 3D distribution and the detector must be rotated around the patient - see Figure C above - to collect a projection at each angle as is performed in a SPECT scan in a hospital.

A patient undergoes a SPECT scan.

Putting it all together

After the radiotracer has “washed through” the patient, the aim of the exercise is to build up a picture of the tumor from a series of measured counts in detector pixels. We can’t simply add the counts in the detector at each angle - we have to perform a reconstruction.

For SPECT and PET this requires tracing lines back from the detector pixel to where the photons came from (inside the tumor). We do this for each pixel that records energy from a gamma ray.

We know we need two points to form a line. In SPECT, the two points forming each line are the pixel location and the pinhole location.

In order to increase the sensitivity of the device, we can punch more holes in the collimator, which will allow more gamma rays through. This means we can give the patient a lower dose of radiotracer, reducing the risk of causing secondary tumors by the very act of administering the radiotracer in the first place.

Differences between SPECT and PET

To demonstrate why SPECT and PET have different types of detectors, first we must understand the difference in radioisotope that is administered to the patient.

Figure D (below) shows two cartoon representations of a patient with a tumor that has absorbed the SPECT radiotracer (on the left) and the PET radiotracer (on the right).

Left: three gamma rays emitted in the case of a SPECT scan.

Right: the presence of an intermediate positronium in PET means twice as many gamma rays emitted from the tumor.

For both cartoons we have shown three of the millions of decays of the radiotracer that happen while it is inside the patient. For the SPECT case, the nuclear decay is straightforward and we get three gamma rays.

For the PET case, an intermediate positronium is formed, resulting in two gamma rays at each of the three decay sites, giving a total of six gamma rays.

The great thing about PET radioisotopes is that each pair of gamma rays are primarily emitted at 180 degrees to each other. Figure E shows why this is so useful.

As mentioned already, the two points that form the line in the reconstruction in SPECT are the pinhole in the collimator and the pixel of the detector.

For PET radioisotopes, all we have to do is detect the two gamma rays for each decay and this enables us to trace the line that finds where the emission came from.

We can do this by including a second detector and throwing away the collimator, which means we get an enormous gain in sensitivity (up to 1,000 times).

Generally, SPECT radiotracers last longer in the patient and are primarily used in cardiology where myocardial stress imaging takes about three to four hours, whereas PET radiotracers emit gamma rays with shorter lives and higher energies and are more useful in brain imaging where scans last about 30 minutes.

As with everything in science, no system is perfect. PET does suffer from several resolution limitations and there are issues with the range of radioisotopes that decay via positron emission.

But they are two useful tools in the clinician’s arsenal for diagnosing disease in patients.

Further reading:
X-rays and CT scans


Average (0 Votes)

No comments yet. Be the first.